Biochemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development.

نویسندگان

  • Tracy L Young-Pearse
  • Seiyam Suth
  • Eric S Luth
  • Akira Sawa
  • Dennis J Selkoe
چکیده

Although clinically distinct, schizophrenia and Alzheimer's disease are common and devastating disorders that profoundly impair cognitive function. For Alzheimer's disease, key mechanistic insights have emerged from genetic studies that identified causative mutations in amyloid precursor protein (APP) and presenilin. Several genes have been associated with schizophrenia and other major psychoses, and understanding their normal functions will help elucidate the underlying causes of these disorders. One such gene is disrupted-in-schizophrenia 1 (DISC1). DISC1 and APP have been implicated separately in cortical development, with each having roles in both neuronal migration and neurite outgrowth. Here, we report a previously unrecognized biochemical and functional interaction between DISC1 and APP. Using in utero electroporation in the living rat brain, we show that DISC1 acts downstream of APP and Disabled-1 to regulate cortical precursor cell migration. Specifically, overexpression of DISC1 rescues the migration defect caused by a loss of APP expression. Moreover, knockdown of APP in cultured embryonic neurons results in altered subcellular localization of DISC1. Using transfected cells and normal brain tissue, we show that APP and DISC1 coimmunoprecipitate and that the intracellular domain of APP interacts with the N-terminal domain of DISC1. Based on these findings, we hypothesize that the APP cytoplasmic region transiently interacts with DISC1 to help regulate the translocation of DISC1 to the centrosome, where it plays a key role in controlling neuronal migration during cortical development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancortins interact with amyloid precursor protein and modulate cortical cell migration.

Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to ide...

متن کامل

Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development

The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development; however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discov...

متن کامل

Roles of Disrupted-In-Schizophrenia 1-Interacting Protein Girdin in Postnatal Development of the Dentate Gyrus

Disrupted-In-Schizophrenia 1 (DISC1), a susceptibility gene for major psychiatric disorders, regulates neuronal migration and differentiation during mammalian brain development. Although roles for DISC1 in postnatal neurogenesis in the dentate gyrus (DG) have recently emerged, it is not known how DISC1 and its interacting proteins govern the migration, positioning, and differentiation of dentat...

متن کامل

Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility

Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Us...

متن کامل

APLP2 regulates neuronal stem cell differentiation during cortical development.

Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 31  شماره 

صفحات  -

تاریخ انتشار 2010